Æȷοì
Sameer Bansal
Sameer Bansal
University of Edinburgh
ttic.eduÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Pre-training on high-resource speech recognition improves low-resource speech-to-text translation
S Bansal, H Kamper, K Livescu, A Lopez, S Goldwater
arXiv preprint arXiv:1809.01431, 2018
2142018
Towards speech-to-text translation without speech recognition
S Bansal, H Kamper, A Lopez, S Goldwater
arXiv preprint arXiv:1702.03856, 2017
862017
Low-Resource Speech-to-Text Translation
S Bansal, H Kamper, K Livescu, A Lopez, S Goldwater
arXiv preprint arXiv:1803.09164, 2018
762018
Analyzing ASR pretraining for low-resource speech-to-text translation
MC Stoian, S Bansal, S Goldwater
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and ¡¦, 2020
722020
Field optimized, configurable wireless fire system
S Bansal, G Sharma, VS Kore, AG Berezowski
US Patent 8,553,664, 2013
292013
Battery management in wireless mesh networks
S Bansal, VS Kore
US Patent 10,101,789, 2018
182018
Spoken term discovery for language documentation using translations
A Anastasopoulos, S Bansal, S Goldwater, A Lopez, D Chiang
First Workshop on Speech-Centric Natural Language Processing, 53-58, 2017
152017
Weakly supervised spoken term discovery using cross-lingual side information
S Bansal, H Kamper, S Goldwater, A Lopez
2017 IEEE International Conference on Acoustics, Speech and Signal ¡¦, 2017
142017
Cross-Lingual Topic Prediction For Speech Using Translations
S Bansal, H Kamper, A Lopez, S Goldwater
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and ¡¦, 2020
12020
Low-resource speech translation
S Bansal
The University of Edinburgh, 2019
12019
Comparing Euclidean and Hyperbolic Embeddings on the WordNet Nouns Hypernymy Graph
S Bansal, A Benton
arXiv preprint arXiv:2109.07488, 2021
2021
Classifying topics in speech when all you have is crummy translations.
S Bansal, H Kamper, A Lopez, S Goldwater
CoRR, 2019
2019
Method of coexistence of multiple wireless fire systems
VS Kore, S Bansal, G Sharma
US Patent 9,295,066, 2016
2016
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–13