Æȷοì
Juhwan Noh
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Inverse design of solid-state materials via a continuous representation
J Noh, J Kim, HS Stein, B Sanchez-Lengeling, JM Gregoire, ...
Matter 1 (5), 1370-1384, 2019
3342019
Machine learning for renewable energy materials
GH Gu, J Noh, I Kim, Y Jung
Journal of Materials Chemistry A 7 (29), 17096-17117, 2019
2852019
Generative Adversarial Networks for Crystal Structure Prediction
S Kim¢Ó, J Noh¢Ó, GH Gu, A Aspuru-Guzik, Y Jung
ACS Central Science 6 (8), 1412-1420 (¢Óequal contribution), 2020
2182020
An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties
Z Ren, SIP Tian, J Noh, F Oviedo, G Xing, J Li, Q Liang, R Zhu, AG Aberle, ...
Matter 5 (1), 314-335, 2022
170*2022
Machine-enabled inverse design of inorganic solid materials: promises and challenges
J Noh, GH Gu, S Kim, Y Jung
Chemical Science 11 (19), 4871-4881, 2020
1612020
Active learning with non-ab initio input features toward efficient CO 2 reduction catalysts
J Noh, S Back, J Kim, Y Jung
Chemical science 9 (23), 5152-5159, 2018
1202018
Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions
C Choi, GH Gu, J Noh, HS Park, Y Jung
Nature Communications 12 (1), 4353, 2021
1162021
Structure-based synthesizability prediction of crystals using partially supervised learning
J Jang, GH Gu, J Noh, J Kim, Y Jung
Journal of the American Chemical Society 142 (44), 18836-18843, 2020
1072020
Practical deep-learning representation for fast heterogeneous catalyst screening
GH Gu¢Ó, J Noh¢Ó, S Kim, S Back, Z Ulissi, Y Jung
The Journal of Physical Chemistry Letters 11 (9), 3185-3191 (¢Óequal ¡¦, 2020
962020
Progress in computational and machine‐learning methods for heterogeneous small‐molecule activation
GH Gu, C Choi, Y Lee, AB Situmorang, J Noh, YH Kim, Y Jung
Advanced materials 32 (35), 1907865, 2020
622020
Uncertainty-quantified hybrid machine learning/density functional theory high throughput screening method for crystals
J Noh, GH Gu, S Kim, Y Jung
Journal of Chemical Information and Modeling 60 (4), 1996-2003, 2020
532020
Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation
GH Gu, J Lim, C Wan, T Cheng, H Pu, S Kim, J Noh, C Choi, J Kim, ...
Journal of the American Chemical Society 143 (14), 5355-5363, 2021
422021
Accelerated chemical science with AI
S Back, A Aspuru-Guzik, M Ceriotti, G Gryn'ova, B Grzybowski, GH Gu, ...
Digital Discovery 3 (1), 23-33, 2024
382024
Perovskite synthesizability using graph neural networks
GH Gu¢Ó, J Jang¢Ó, J Noh¢Ó, A Walsh, Y Jung
npj Computational Materials 8 (1), 1-8 (¢Óequal contribution), 2022
352022
Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments
J Noh, S Kim, G ho Gu, A Shinde, L Zhou, JM Gregoire, Y Jung
Chemical Communications 55 (89), 13418-13421, 2019
252019
Bimetallic Gold–Silver Nanostructures Drive Low Overpotentials for Electrochemical Carbon Dioxide Reduction
JW Park¢Ó, W Choi¢Ó, J Noh¢Ó, W Park, GH Gu, J Park, Y Jung, H Song
ACS Applied Materials & Interfaces 14 (5), 6604-6614 (¢Óequal contribution), 2022
182022
Path-aware and structure-preserving generation of synthetically accessible molecules
J Noh, DW Jeon, K Kim, SH Han, M Lee, Y Jung
Proceddings of the 39th International Conference on Machine Learning 162 ¡¦, 2022
102022
Predicting Potentially Hazardous Chemical Reactions Using Explainable Neural Network
J Kim¢Ó, G Gu¢Ó, J Noh¢Ó, S Kim, S Gim, J Choi, Y Jung
Chemical Sciecne 12, 11028-11037, 2021
62021
Machine learning-enabled chemical space exploration of all-inorganic perovskites for photovoltaics
JS Kim, J Noh, J Im
npj Computational Materials 10 (1), 97, 2024
52024
Synthesizability of materials stoichiometry using semi-supervised learning
J Jang, J Noh, L Zhou, GH Gu, JM Gregoire, Y Jung
Matter 7 (6), 2294-2312, 2024
42024
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20