Multiscale vision transformers H Fan*, B Xiong*, K Mangalam*, Y Li*, Z Yan, J Malik, C Feichtenhofer* IEEE Conference on Computer Vision and Pattern Recognition, 2021 | 1953 | 2021 |
Ego4d: Around the world in 3,000 hours of egocentric video K Grauman, A Westbury, E Byrne, Z Chavis, A Furnari, R Girdhar, ... IEEE Conference on Computer Vision and Pattern Recognition, 2022 | 377 | 2022 |
Mvitv2: Improved multiscale vision transformers for classification and detection Y Li, CY Wu, H Fan, K Mangalam, B Xiong, J Malik, C Feichtenhofer Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 366 | 2022 |
It is not the journey but the destination: Endpoint conditioned trajectory prediction K Mangalam, H Girase, S Agarwal, KH Lee, E Adeli, J Malik, A Gaidon European Conference on Computer Vision, 2020 | 327 | 2020 |
Future person localization in first-person videos T Yagi, K Mangalam, R Yonetani, Y Sato IEEE Conference on Computer Vision and Pattern Recognition, 2018 | 189 | 2018 |
Long-term human motion prediction with scene context Z Cao, H Gao, K Mangalam, QZ Cai, M Vo, J Malik European Conference on Computer Vision, 2020 | 177 | 2020 |
From goals, waypoints & paths to long term human trajectory forecasting K Mangalam, Y An, H Girase, J Malik IEEE International Conference on Computer Vision, 2021 | 158 | 2021 |
MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Long-Term Video Recognition CY Wu*, Y Li*, K Mangalam, H Fan, B Xiong, J Malik, C Feichtenhofer* arXiv preprint arXiv:2201.08383, 2022 | 99 | 2022 |
LOKI: Long Term and Key Intentions for Trajectory Prediction H Girase, H Gang, S Malla, J Li, A Kanehara, K Mangalam, C Choi IEEE International Conference on Computer Vision, 2021 | 52 | 2021 |
Disentangling human dynamics for pedestrian locomotion forecasting with noisy supervision K Mangalam, E Adeli, KH Lee, A Gaidon, JC Niebles IEEE Winter Conference on Applications of Computer Vision, 2020 | 50 | 2020 |
Object-region video transformers R Herzig, E Ben-Avraham, K Mangalam, A Bar, G Chechik, A Rohrbach, ... IEEE Conference on Computer Vision and Pattern Recognition, 2022 | 48 | 2022 |
Do deep neural networks learn shallow learnable examples first? K Mangalam, VU Prabhu Understanding Deep Phenomena, International Conference on Machine Learning, 2019 | 36 | 2019 |
Squeezeformer: An efficient transformer for automatic speech recognition S Kim, A Gholami, A Shaw, N Lee, K Mangalam, J Malik, MW Mahoney, ... Advances in Neural Information Processing Systems 35, 9361-9373, 2022 | 35 | 2022 |
Reversible vision transformers K Mangalam, H Fan, Y Li, CY Wu, B Xiong, C Feichtenhofer, J Malik Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 21 | 2022 |
Learning spontaneity to improve emotion recognition in speech K Mangalam, T Guha Interspeech, 2018 | 19 | 2018 |
On compressing u-net using knowledge distillation K Mangalam, M Salzamann arXiv preprint arXiv:1812.00249, 2018 | 15 | 2018 |
Re2tal: Rewiring pretrained video backbones for reversible temporal action localization C Zhao, S Liu, K Mangalam, B Ghanem Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 11 | 2023 |
Big little transformer decoder S Kim, K Mangalam, J Malik, MW Mahoney, A Gholami, K Keutzer arXiv preprint arXiv:2302.07863, 2023 | 10 | 2023 |
Multiscale vision transformers. arXiv 2021 H Fan, B Xiong, K Mangalam, Y Li, Z Yan, J Malik, C Feichtenhofer arXiv preprint arXiv:2104.11227, 0 | 10 | |
Diffusion Models as Masked Autoencoders C Wei, K Mangalam, PY Huang, Y Li, H Fan, H Xu, H Wang, C Xie, ... arXiv preprint arXiv:2304.03283, 2023 | 8 | 2023 |