ÆÈ·Î¿ì
Soumith Chintala
Soumith Chintala
Meta AI
nyu.eduÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Pytorch: An imperative style, high-performance deep learning library
A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ...
Advances in Neural Information Processing Systems, 8024--8035, 2019
286932019
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
A Radford, L Metz, S Chintala
International Conference on Learning Representations, 2015
150092015
Wasserstein generative adversarial networks
M Arjovsky, S Chintala, L Bottou
International conference on machine learning, 214-223, 2017
130132017
Automatic differentiation in pytorch
A Paszke, S Gross, S Chintala, G Chanan, E Yang, Z DeVito, Z Lin, ...
Neural Information Processing Systems Autodiff Workshop, 2017
118432017
Deep generative image models using a laplacian pyramid of adversarial networks
E Denton, S Chintala, A Szlam, R Fergus
Advances in Neural Information Processing Systems, 2015
26582015
Pedestrian detection with unsupervised multi-stage feature learning
P Sermanet, K Kavukcuoglu, S Chintala, Y LeCun
Proceedings of the IEEE Conference on Computer Vision and Pattern ¡¦, 2013
10642013
Semantic segmentation using adversarial networks
P Luc, C Couprie, S Chintala, J Verbeek
Neural Information Processing Systems Workshop on Adversarial Training, 2016
8352016
Convolutional neural networks applied to house numbers digit classification
P Sermanet, S Chintala, Y LeCun
International Conference on Pattern Recognition, 3288-3291, 2012
6772012
Applied machine learning at facebook: A datacenter infrastructure perspective
K Hazelwood, S Bird, D Brooks, S Chintala, U Diril, D Dzhulgakov, ...
2018 IEEE International Symposium on High Performance Computer Architecture ¡¦, 2018
5872018
Wasserstein gan. arXiv 2017
M Arjovsky, S Chintala, L Bottou
arXiv preprint arXiv:1701.07875 30, 2017
3802017
Fast convolutional nets with fbfft: A GPU performance evaluation
N Vasilache, J Johnson, M Mathieu, S Chintala, S Piantino, Y LeCun
International Conference on Learning Representations, 2015
3712015
Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration
A Paszke, S Gross, S Chintala, G Chanan
PyTorch: Tensors and dynamic neural networks in Python with strong GPU ¡¦, 2017
3102017
A multipath network for object detection
S Zagoruyko, A Lerer, TY Lin, PO Pinheiro, S Gross, S Chintala, P Dollár
British Machine Vision Conference 2016, 2016
2702016
Pytorch distributed: Experiences on accelerating data parallel training
S Li, Y Zhao, R Varma, O Salpekar, P Noordhuis, T Li, A Paszke, J Smith, ...
Proceedings of the VLDB Endowment, 2020
2602020
Discovering causal signals in images
D Lopez-Paz, R Nishihara, S Chintala, B Scholkopf, L Bottou
Proceedings of the IEEE Conference on Computer Vision and Pattern ¡¦, 2017
1922017
Automatic differentiation in pytorch
P Adam, G Sam, C Soumith, C Gregory, Y Edward, DV Zachary, L Zeming, ...
Proceedings of neural information processing systems 5, 2017
1852017
Episodic exploration for deep deterministic policies: An application to starcraft micromanagement tasks
N Usunier, G Synnaeve, Z Lin, S Chintala
arXiv preprint arXiv:1609.02993, 2016
1712016
Torchcraft: a library for machine learning research on real-time strategy games
G Synnaeve, N Nardelli, A Auvolat, S Chintala, T Lacroix, Z Lin, F Richoux, ...
arXiv preprint arXiv:1611.00625, 2016
1322016
Pytorch: An imperative style, high-performance deep learning library. arXiv 2019
A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ...
arXiv preprint arXiv:1912.01703, 1912
1231912
How to train a GAN? Tips and tricks to make GANs work
S Chintala, E Denton, M Arjovsky, M Mathieu
Neural Information Processing Systems Tutorial on Generative Adversarial ¡¦, 2016
1212016
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20