ÆÈ·Î¿ì
Matthias Fey
Matthias Fey
Founding Engineer @ kumo.ai
tu-dortmund.deÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Fast graph representation learning with PyTorch Geometric
M Fey, JE Lenssen
arXiv preprint arXiv:1903.02428, 2019
23962019
Open graph benchmark: Datasets for machine learning on graphs
W Hu, M Fey, M Zitnik, Y Dong, H Ren, B Liu, M Catasta, J Leskovec
Advances in neural information processing systems 33, 22118-22133, 2020
11992020
Weisfeiler and leman go neural: Higher-order graph neural networks
C Morris, M Ritzert, M Fey, WL Hamilton, JE Lenssen, G Rattan, M Grohe
Proceedings of the AAAI Conference on Artificial Intelligence 33, 4602-4609, 2019
9402019
Splinecnn: Fast geometric deep learning with continuous b-spline kernels
M Fey, JE Lenssen, F Weichert, H Müller
Proceedings of the IEEE conference on computer vision and pattern ¡¦, 2018
4002018
Deep graph matching consensus
M Fey, JE Lenssen, C Morris, J Masci, NM Kriege
arXiv preprint arXiv:2001.09621, 2020
1612020
Ogb-lsc: A large-scale challenge for machine learning on graphs
W Hu, M Fey, H Ren, M Nakata, Y Dong, J Leskovec
arXiv preprint arXiv:2103.09430, 2021
1402021
Group equivariant capsule networks
JE Lenssen, M Fey, P Libuschewski
Advances in neural information processing systems 31, 2018
1142018
Fast graph representation learning with PyTorch Geometric. arXiv 2019
M Fey, JE Lenssen
arXiv preprint arXiv:1903.02428, 1903
631903
Gnnautoscale: Scalable and expressive graph neural networks via historical embeddings
M Fey, JE Lenssen, F Weichert, J Leskovec
International Conference on Machine Learning, 3294-3304, 2021
582021
Hierarchical inter-message passing for learning on molecular graphs
M Fey, JG Yuen, F Weichert
arXiv preprint arXiv:2006.12179, 2020
402020
Adversarial generation of continuous implicit shape representations
M Kleineberg, M Fey, F Weichert
arXiv preprint arXiv:2002.00349, 2020
402020
Weisfeiler and leman go machine learning: The story so far
C Morris, Y Lipman, H Maron, B Rieck, NM Kriege, M Grohe, M Fey, ...
arXiv preprint arXiv:2112.09992, 2021
392021
Just jump: Dynamic neighborhood aggregation in graph neural networks
M Fey
arXiv preprint arXiv:1904.04849, 2019
332019
Recognizing cuneiform signs using graph based methods
NM Kriege, M Fey, D Fisseler, P Mutzel, F Weichert
International Workshop on Cost-Sensitive Learning, 31-44, 2018
232018
The power of the weisfeiler-leman algorithm for machine learning with graphs
C Morris, M Fey, NM Kriege
arXiv preprint arXiv:2105.05911, 2021
122021
CP-and OCF-networks–a comparison
C Eichhorn, M Fey, G Kern-Isberner
Fuzzy sets and Systems 298, 109-127, 2016
72016
4 Structured Data
N Piatkowski, K Morik, N Kriege, C Morris, M Fey, F Weichert, N Bertram, ...
Volume 1 Fundamentals, 99-178, 2022
2022
On the Power of Message Passing for Learning on Graph-Structured Data
M Fey
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–18