Æȷοì
Michael Cogswell
Michael Cogswell
sri.comÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Grad-cam: Visual explanations from deep networks via gradient-based localization
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
Proceedings of the IEEE international conference on computer vision, 618-626, 2017
242082017
Diverse beam search: Decoding diverse solutions from neural sequence models
AK Vijayakumar, M Cogswell, RR Selvaraju, Q Sun, S Lee, D Crandall, ...
arXiv preprint arXiv:1610.02424, 2016
5562016
Reducing overfitting in deep networks by decorrelating representations
M Cogswell, F Ahmed, R Girshick, L Zitnick, D Batra
arXiv preprint arXiv:1511.06068, 2015
4942015
Why m heads are better than one: Training a diverse ensemble of deep networks
S Lee, S Purushwalkam, M Cogswell, D Crandall, D Batra
arXiv preprint arXiv:1511.06314, 2015
3292015
Proceedings of the IEEE international conference on computer vision
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
Proceedings of the IEEE international conference on computer vision [J], 2017
2552017
Diverse beam search for improved description of complex scenes
A Vijayakumar, M Cogswell, R Selvaraju, Q Sun, S Lee, D Crandall, ...
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
2452018
Stochastic multiple choice learning for training diverse deep ensembles
S Lee, S Purushwalkam Shiva Prakash, M Cogswell, V Ranjan, ...
Advances in Neural Information Processing Systems 29, 2016
2082016
Grad-CAM: Visual explanations from deep networks via gradient-based localization. arXiv 2016
RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra
arXiv preprint arXiv:1610.02391 6, 2022
942022
Emergence of compositional language with deep generational transmission
M Cogswell, J Lu, S Lee, D Parikh, D Batra
arXiv preprint arXiv:1904.09067, 2019
582019
Grad-CAM: Why did you say that? arXiv 2016
RR Selvaraju, A Das, R Vedantam, M Cogswell, D Parikh, D Batra
arXiv preprint arXiv:1611.07450, 0
56
Running students' software tests against each others' code: new life for an old" gimmick"
SH Edwards, Z Shams, M Cogswell, RC Senkbeil
Proceedings of the 43rd ACM technical symposium on Computer Science ¡¦, 2012
482012
Trigger hunting with a topological prior for trojan detection
X Hu, X Lin, M Cogswell, Y Yao, S Jha, C Chen
arXiv preprint arXiv:2110.08335, 2021
382021
Dress: Instructing large vision-language models to align and interact with humans via natural language feedback
Y Chen, K Sikka, M Cogswell, H Ji, A Divakaran
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ¡¦, 2024
282024
Combining the best of graphical models and convnets for semantic segmentation
M Cogswell, X Lin, S Purushwalkam, D Batra
arXiv preprint arXiv:1412.4313, 2014
222014
Measuring and improving chain-of-thought reasoning in vision-language models
Y Chen, K Sikka, M Cogswell, H Ji, A Divakaran
arXiv preprint arXiv:2309.04461, 2023
142023
Dialog without dialog data: Learning visual dialog agents from VQA data
M Cogswell, J Lu, R Jain, S Lee, D Parikh, D Batra
Advances in Neural Information Processing Systems 33, 19988-19999, 2020
132020
Probing conceptual understanding of large visual-language models
M Schiappa, R Abdullah, S Azad, J Claypoole, M Cogswell, A Divakaran, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ¡¦, 2024
112024
Unpacking large language models with conceptual consistency
P Sahu, M Cogswell, Y Gong, A Divakaran
arXiv preprint arXiv:2209.15093, 2022
112022
Improving users' mental model with attention‐directed counterfactual edits
K Alipour, A Ray, X Lin, M Cogswell, JP Schulze, Y Yao, GT Burachas
Applied AI Letters 2 (4), e47, 2021
72021
Comprehension based question answering using Bloom's Taxonomy
P Sahu, M Cogswell, S Rutherford-Quach, A Divakaran
arXiv preprint arXiv:2106.04653, 2021
62021
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20