Follow
Sungroh Yoon
Sungroh Yoon
Professor, Electrical and Computer Engineering & Artificial Intelligence, Seoul National University
Verified email at snu.ac.kr
Title
Cited by
Cited by
Year
Deep Learning in Bioinformatics
S Min, B Lee, S Yoon
Briefings in Bioinformatics 18 (5), 851-869, 2016
14092016
FickleNet: Weakly and Semi-Supervised Semantic Image Segmentation Using Stochastic Inference
J Lee, E Kim, S Lee, J Lee, S Yoon
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5267-5276, 2019
3542019
RNA design rules from a massive open laboratory
J Lee, W Kladwang, M Lee, D Cantu, M Azizyan, H Kim, A Limpaecher, ...
Proceedings of the National Academy of Sciences 111 (6), 2122-2127, 2014
3072014
How generative adversarial networks and their variants work: An overview
Y Hong, U Hwang, J Yoo, S Yoon
ACM Computing Surveys (CSUR) 52 (1), 1-43, 2019
2832019
Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity
HK Kim, S Min, M Song, S Jung, JW Choi, Y Kim, S Lee, S Yoon, H Kim
Nature biotechnology 36 (3), 239-241, 2018
2262018
Got target?: computational methods for microRNA target prediction and their extension
H Min, S Yoon
Experimental & molecular medicine 42 (4), 233-244, 2010
2262010
Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search
J Kim, S Kim, J Kong, S Yoon
NeurIPS 2020 Oral (arXiv preprint arXiv:2005.11129), 2020
2182020
Patch SVDD: Patch-level SVDD for anomaly detection and segmentation
J Yi, S Yoon
Proceedings of the Asian Conference on Computer Vision, 2020
1942020
Spiking-YOLO: Spiking Neural Network for Real-time Object Detection
S Kim, S Park, B Na, S Yoon
AAAI 2020 (arXiv preprint arXiv:1903.06530), 2020
191*2020
Prediction of regulatory modules comprising microRNAs and target genes
S Yoon, G De Micheli
Bioinformatics 21 (suppl_2), ii93-ii100, 2005
1882005
FloWaveNet : A Generative Flow for Raw Audio
S Kim, S Lee, J Song, S Yoon
ICML 2019 (arXiv preprint arXiv:1811.02155), 2018
1592018
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
J Choi, S Kim, Y Jeong, Y Gwon, S Yoon
ICCV 2021 Oral (arXiv preprint arXiv:2108.02938), 2021
131*2021
LSTM-based system-call language modeling and robust ensemble method for designing host-based intrusion detection systems
G Kim, H Yi, J Lee, Y Paek, S Yoon
arXiv preprint arXiv:1611.01726, 2016
1232016
Big/little deep neural network for ultra low power inference
E Park, D Kim, S Kim, YD Kim, G Kim, S Yoon, S Yoo
2015 International Conference on Hardware/Software Codesign and System …, 2015
1232015
SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance
HK Kim, Y Kim, S Lee, S Min, JY Bae, JW Choi, J Park, D Jung, S Yoon, ...
Science advances 5 (11), eaax9249, 2019
1182019
Predicting the efficiency of prime editing guide RNAs in human cells
HK Kim, G Yu, J Park, S Min, S Lee, S Yoon, HH Kim
Nature Biotechnology 39 (2), 198-206, 2021
1122021
Prediction of the sequence-specific cleavage activity of Cas9 variants
N Kim, HK Kim, S Lee, JH Seo, JW Choi, J Park, S Min, S Yoon, SR Cho, ...
Nature Biotechnology 38 (11), 1328-1336, 2020
1092020
Biometric authentication using noisy electrocardiograms acquired by mobile sensors
HS Choi, B Lee, S Yoon
IEEE access 4, 1266-1273, 2016
1002016
HiTRACE: high-throughput robust analysis for capillary electrophoresis
S Yoon, J Kim, J Hum, H Kim, S Park, W Kladwang, R Das
Bioinformatics 27 (13), 1798-1805, 2011
992011
Deep recurrent neural network-based identification of precursor microRNAs
S Park, S Min, HS Choi, S Yoon
Advances in Neural Information Processing Systems (NIPS), 2891-2900, 2017
98*2017
The system can't perform the operation now. Try again later.
Articles 1–20