A stable multi-scale kernel for topological machine learning J Reininghaus, S Huber, U Bauer, R Kwitt Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 313 | 2015 |
SHREC 2011: robust feature detection and description benchmark E Boyer, AM Bronstein, MM Bronstein, B Bustos, T Darom, R Horaud, ... Arxiv preprint arXiv:1102.4258, 2011 | 202 | 2011 |
Phat–persistent homology algorithms toolbox U Bauer, M Kerber, J Reininghaus, H Wagner Journal of symbolic computation 78, 76-90, 2017 | 177 | 2017 |
Distributed computation of persistent homology U Bauer, M Kerber, J Reininghaus 2014 proceedings of the sixteenth workshop on algorithm engineering and …, 2014 | 117 | 2014 |
Clear and compress: Computing persistent homology in chunks U Bauer, M Kerber, J Reininghaus Topological methods in data analysis and visualization III, 103-117, 2014 | 105 | 2014 |
Two-dimensional time-dependent vortex regions based on the acceleration magnitude J Kasten, J Reininghaus, I Hotz, HC Hege IEEE Transactions on Visualization and Computer Graphics 17 (12), 2080-2087, 2011 | 98 | 2011 |
Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory D Günther, J Reininghaus, H Wagner, I Hotz The Visual Computer 28 (10), 959-969, 2012 | 72 | 2012 |
Fast combinatorial vector field topology J Reininghaus, C Lowen, I Hotz IEEE Transactions on Visualization and Computer Graphics 17 (10), 1433-1443, 2010 | 51 | 2010 |
The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification C Carstensen, D Günther, J Reininghaus, J Thiele Computer methods in applied mechanics and engineering 197 (33-40), 3014-3023, 2008 | 45 | 2008 |
A scale space based persistence measure for critical points in 2d scalar fields J Reininghaus, N Kotava, D Günther, J Kasten, H Hagen, I Hotz IEEE Transactions on Visualization and Computer Graphics 17 (12), 2045-2052, 2011 | 42 | 2011 |
Combinatorial 2d vector field topology extraction and simplification J Reininghaus, I Hotz Topological Methods in Data Analysis and Visualization, 103-114, 2011 | 41 | 2011 |
Efficient computation of combinatorial feature flow fields J Reininghaus, J Kasten, T Weinkauf, I Hotz IEEE Transactions on Visualization and Computer Graphics 18 (9), 1563-1573, 2011 | 34 | 2011 |
Fast and memory-efficienty topological denoising of 2D and 3D scalar fields D Günther, A Jacobson, J Reininghaus, HP Seidel, O Sorkine-Hornung, ... IEEE transactions on visualization and computer graphics 20 (12), 2585-2594, 2014 | 33 | 2014 |
Memory-Efficient Computation of Persistent Homology for 3D Images using Discrete Morse Theory D Günther, J Reininghaus, I Hotz, H Wagner | 26* | |
TADD: A computational framework for data analysis using discrete Morse theory J Reininghaus, D Günther, I Hotz, S Prohaska, HC Hege International Congress on Mathematical Software, 198-208, 2010 | 25 | 2010 |
Notes on the simplification of the Morse-Smale complex D Günther, J Reininghaus, HP Seidel, T Weinkauf Topological methods in data analysis and visualization III, 135-150, 2014 | 23 | 2014 |
Acceleration feature points of unsteady shear flows J Kasten, J Reininghaus, I Hotz, HC Hege, BR Noack, G Daviller, ... arXiv preprint arXiv:1401.2462, 2014 | 22 | 2014 |
FFW documentation A Byfut, J Gedicke, D Günther, J Reininghaus, S Wiedemann Humboldt University of Berlin, Germany, 2007 | 22 | 2007 |
Efficient computation of a hierarchy of discrete 3d gradient vector fields D Günther, J Reininghaus, S Prohaska, T Weinkauf, HC Hege Topological Methods in Data Analysis and Visualization II, 15-29, 2012 | 16 | 2012 |
Combinatorial gradient fields for 2d images with empirically convergent separatrices J Reininghaus, D Günther, I Hotz, T Weinkauf, HP Seidel arXiv preprint arXiv:1208.6523, 2012 | 14 | 2012 |