Ten lectures on wavelets I Daubechies Society for industrial and applied mathematics, 1992 | 32231 | 1992 |

Orthonormal bases of compactly supported wavelets I Daubechies Communications on pure and applied mathematics 41 (7), 909-996, 1988 | 11675 | 1988 |

The wavelet transform, time-frequency localization and signal analysis I Daubechies IEEE transactions on information theory 36 (5), 961-1005, 1990 | 7991 | 1990 |

Image coding using wavelet transform M Antonini, M Barlaud, P Mathieu, I Daubechies IEEE Transactions on image processing 1 (2), 205-220, 1992 | 5414 | 1992 |

An iterative thresholding algorithm for linear inverse problems with a sparsity constraint I Daubechies, M Defrise, C De Mol Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2004 | 4661 | 2004 |

Biorthogonal bases of compactly supported wavelets A Cohen, I Daubechies, JC Feauveau Communications on pure and applied mathematics 45 (5), 485-560, 1992 | 3910 | 1992 |

Factoring wavelet transforms into lifting steps I Daubechies, W Sweldens Journal of Fourier analysis and applications 4 (3), 247-269, 1998 | 3721 | 1998 |

Painless nonorthogonal expansions I Daubechies, A Grossmann, Y Meyer Journal of Mathematical Physics 27 (5), 1271-1283, 1986 | 1938 | 1986 |

Wavelet transforms that map integers to integers AR Calderbank, I Daubechies, W Sweldens, BL Yeo Applied and computational harmonic analysis 5 (3), 332-369, 1998 | 1763 | 1998 |

Wavelets on the interval and fast wavelet transforms A Cohen, I Daubechies, P Vial Applied and computational harmonic analysis, 1993 | 1297 | 1993 |

Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool I Daubechies, J Lu, HT Wu Applied and computational harmonic analysis 30 (2), 243-261, 2011 | 1241 | 2011 |

Iteratively reweighted least squares minimization for sparse recovery I Daubechies, R DeVore, M Fornasier, CS Güntürk Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2010 | 1183 | 2010 |

Framelets: MRA-based constructions of wavelet frames I Daubechies, B Han, A Ron, Z Shen Applied and computational harmonic analysis 14 (1), 1-46, 2003 | 838 | 2003 |

Time-frequency localization operators: a geometric phase space approach I Daubechies IEEE Transactions on Information Theory 34 (4), 605-612, 1988 | 706 | 1988 |

Two-scale difference equations. I. Existence and global regularity of solutions I Daubechies, JC Lagarias SIAM Journal on Mathematical Analysis 22 (5), 1388-1410, 1991 | 652 | 1991 |

Two-scale difference equations II. Local regularity, infinite products of matrices and fractals I Daubechies, JC Lagarias SIAM Journal on Mathematical Analysis 23 (4), 1031-1079, 1992 | 609 | 1992 |

Data compression and harmonic analysis DL Donoho, M Vetterli, RA DeVore, I Daubechies IEEE transactions on information theory 44 (6), 2435-2476, 1998 | 571 | 1998 |

Orthonormal bases of compactly supported wavelets II. Variations on a theme I Daubechies SIAM Journal on Mathematical Analysis 24 (2), 499-519, 1993 | 512 | 1993 |

Lossless image compression using integer to integer wavelet transforms AR Calderbank, I Daubechies, W Sweldens, BL Yeo Proceedings of International Conference on Image Processing 1, 596-599, 1997 | 452 | 1997 |

Sets of matrices all infinite products of which converge I Daubechies, JC Lagarias Linear algebra and its applications 161, 227-263, 1992 | 452 | 1992 |