Æȷοì
Randy Davila
Randy Davila
rice.eduÀÇ À̸ÞÀÏ È®ÀεÊ
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Upper bounds on the k-forcing number of a graph
D Amos, Y Caro, R Davila, R Pepper
Discrete Applied Mathematics 181, 1-10, 2015
942015
Bounds for the zero-forcing number of graphs with large girth
R Davila, F Kenter
Theory and Applications of Graphs 2 (1), 2015
462015
A lower bound on the zero forcing number
R Davila, T Kalinowski, S Stephen
Discrete Applied Mathematics 250, 363-367, 2018
422018
Bounds on the connected forcing number of a graph
R Davila, MA Henning, C Magnant, R Pepper
Graphs and Combinatorics 34, 1159-1174, 2018
312018
On the total forcing number of a graph
R Davila, MA Henning
Discrete Applied Mathematics 257, 115-127, 2019
302019
Lower bounds on the distance domination number of a graph
R Davila, C Fast, M Henning, F Kenter
Contributions to Discrete Mathematics 12 (2), 11-21, 2015
272015
Bounding the forcing number of a graph
RR Davila
Rice University, 2015
272015
The forcing number of graphs with given girth
R Davila, MA Henning
Quaestiones Mathematicae 41 (2), 189-204, 2018
212018
Characterizations of the connected forcing number of a graph
B Brimkov, R Davila
arXiv preprint arXiv:1604.00740, 2016
202016
Zero forcing in claw-free cubic graphs
R Davila, MA Henning
Bulletin of the Malaysian Mathematical Sciences Society 43 (1), 673-688, 2020
192020
Total forcing versus total domination in cubic graphs
R Davila, MA Henning
Applied Mathematics and Computation 354, 385-395, 2019
192019
A Vizing-type result for semi-total domination
J Asplund, R Davila, E Krop
Discrete Applied Mathematics 258, 8-12, 2019
192019
Total forcing and zero forcing in claw-free cubic graphs
R Davila, MA Henning
Graphs and Combinatorics 34, 1371-1384, 2018
172018
Total forcing sets and zero forcing sets in trees
R Davila, MA Henning
Discussiones Mathematicae Graph Theory 40 (3), 733-754, 2020
112020
Zero forcing versus domination in cubic graphs
R Davila, MA Henning
Journal of Combinatorial Optimization 41 (2), 553-577, 2021
102021
New results relating independence and matchings
Y Caro, R Davila, R Pepper
arXiv preprint arXiv:1909.09093, 2019
92019
Bounds for the zero forcing number of graphs with large girth, Theory Appl
R Davila, F Kenter
Graphs 2 (2), 2015
92015
Conjectures of TxGraffiti: Independence, domination, and matchings
Y Caro, R Davila, M Henning, R Pepper
Australasian Journal of Combinatorics 84 (2), 258-274, 2021
82021
On the k-residue of disjoint unions of graphs with applications to k-independence
D Amos, R Davila, R Pepper
Discrete Mathematics 321, 24-34, 2014
72014
Computer assisted discovery: Zero forcing vs vertex cover
B Brimkov, R Davila, H Schuerger, M Young
arXiv preprint arXiv:2209.04552, 2022
62022
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20