Generative adversarial networks I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ... Communications of the ACM 63 (11), 139-144, 2020 | 66592* | 2020 |
The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function D Warde-Farley, SL Donaldson, O Comes, K Zuberi, R Badrawi, P Chao, ... Nucleic acids research 38 (suppl_2), W214-W220, 2010 | 3710 | 2010 |
Brain tumor segmentation with deep neural networks M Havaei, A Davy, D Warde-Farley, A Biard, A Courville, Y Bengio, C Pal, ... Medical image analysis 35, 18-31, 2017 | 3171 | 2017 |
Maxout networks I Goodfellow, D Warde-Farley, M Mirza, A Courville, Y Bengio International conference on machine learning, 1319-1327, 2013 | 2985 | 2013 |
Theano: a CPU and GPU math expression compiler J Bergstra, O Breuleux, F Bastien, P Lamblin, R Pascanu, G Desjardins, ... Proceedings of the Python for scientific computing conference (SciPy) 4 (3), 1-7, 2010 | 2008 | 2010 |
Theano: new features and speed improvements F Bastien, P Lamblin, R Pascanu, J Bergstra, I Goodfellow, A Bergeron, ... arXiv preprint arXiv:1211.5590, 2012 | 1677 | 2012 |
GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function S Mostafavi, D Ray, D Warde-Farley, C Grouios, Q Morris Genome biology 9, 1-15, 2008 | 987 | 2008 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv e-prints, arXiv: 1605.02688, 2016 | 913 | 2016 |
Dynamic modularity in protein interaction networks predicts breast cancer outcome IW Taylor, R Linding, D Warde-Farley, Y Liu, C Pesquita, D Faria, S Bull, ... Nature biotechnology 27 (2), 199-204, 2009 | 846 | 2009 |
Theano: A CPU and GPU Math Compiler in Python J Bergstra, O Breuleux, F Bastien, P Lamblin, R Pascanu, G Desjardins, ... SciPy 2010, 0 | 822* | |
Emonets: Multimodal deep learning approaches for emotion recognition in video SE Kahou, X Bouthillier, P Lamblin, C Gulcehre, V Michalski, K Konda, ... Journal on Multimodal User Interfaces 10, 99-111, 2016 | 467 | 2016 |
Combining modality specific deep neural networks for emotion recognition in video SE Kahou, C Pal, X Bouthillier, P Froumenty, Ç Gülçehre, R Memisevic, ... Proceedings of the 15th ACM on International conference on multimodal ¡¦, 2013 | 407 | 2013 |
Pylearn2: a machine learning research library IJ Goodfellow, D Warde-Farley, P Lamblin, V Dumoulin, M Mirza, ... arXiv preprint arXiv:1308.4214, 2013 | 361 | 2013 |
Theano: Deep Learning on GPUs with Python J Bergstra, F Bastien, O Breuleux, P Lamblin, R Pascanu, O Delalleau, ... "Big Learning" Workshop, NIPS 2011, 2011 | 349 | 2011 |
Variational approaches for auto-encoding generative adversarial networks M Rosca, B Lakshminarayanan, D Warde-Farley, S Mohamed arXiv preprint arXiv:1706.04987, 2017 | 308 | 2017 |
A critical assessment of Mus musculusgene function prediction using integrated genomic evidence L Peña-Castillo, M Tasan, CL Myers, H Lee, T Joshi, C Zhang, Y Guan, ... Genome biology 9, 1-19, 2008 | 297 | 2008 |
Unsupervised and transfer learning challenge: a deep learning approach G Mesnil, Y Dauphin, X Glorot, S Rifai, Y Bengio, I Goodfellow, E Lavoie, ... Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 97-110, 2012 | 273 | 2012 |
Blocks and fuel: Frameworks for deep learning B Van Merriënboer, D Bahdanau, V Dumoulin, D Serdyuk, ... arXiv preprint arXiv:1506.00619, 2015 | 202 | 2015 |
Theano: A Python framework for fast computation of mathematical expressions TTD Team, R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, ... arXiv preprint arXiv:1605.02688, 2016 | 198 | 2016 |
11 adversarial perturbations of deep neural networks D Warde-Farley, I Goodfellow Perturbations, Optimization, and Statistics 311 (5), 2016 | 181 | 2016 |