Structured compression by weight encryption for unstructured pruning and quantization SJ Kwon, D Lee, B Kim, P Kapoor, B Park, GY Wei Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ¡¦, 2020 | 25 | 2020 |
Deeptwist: Learning model compression via occasional weight distortion D Lee, P Kapoor, B Kim arXiv preprint arXiv:1810.12823, 2018 | 20 | 2018 |
Biqgemm: matrix multiplication with lookup table for binary-coding-based quantized dnns Y Jeon, B Park, SJ Kwon, B Kim, J Yun, D Lee SC20: International Conference for High Performance Computing, Networking ¡¦, 2020 | 16 | 2020 |
Learning low-rank approximation for cnns D Lee, SJ Kwon, B Kim, GY Wei arXiv preprint arXiv:1905.10145, 2019 | 14 | 2019 |
Extremely low bit transformer quantization for on-device neural machine translation I Chung, B Kim, Y Choi, SJ Kwon, Y Jeon, B Park, S Kim, D Lee arXiv preprint arXiv:2009.07453, 2020 | 12 | 2020 |
Retraining-based iterative weight quantization for deep neural networks D Lee, B Kim arXiv preprint arXiv:1805.11233, 2018 | 12 | 2018 |
nuqmm: Quantized matmul for efficient inference of large-scale generative language models G Park, B Park, SJ Kwon, B Kim, Y Lee, D Lee arXiv preprint arXiv:2206.09557, 2022 | 7 | 2022 |
Flexor: Trainable fractional quantization D Lee, SJ Kwon, B Kim, Y Jeon, B Park, J Yun Advances in neural information processing systems 33, 1311-1321, 2020 | 7 | 2020 |
Network pruning for low-rank binary indexing D Lee, SJ Kwon, B Kim, P Kapoor, GY Wei arXiv preprint arXiv:1905.05686, 2019 | 5 | 2019 |
Computation-efficient quantization method for deep neural networks P Kapoor, D Lee, B Kim, S Lee | 5 | 2019 |
AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of Large-Scale Pre-Trained Language Models SJ Kwon, J Kim, J Bae, KM Yoo, JH Kim, B Park, B Kim, JW Ha, N Sung, ... arXiv preprint arXiv:2210.03858, 2022 | 1 | 2022 |
Q-rater: Non-convex optimization for post-training uniform quantization B Kim, D Lee, Y Ro, Y Jeon, SJ Kwon, B Park, D Oh arXiv preprint arXiv:2105.01868, 2021 | 1 | 2021 |
Post-training weighted quantization of neural networks for language models SJ Kwon, D Lee, Y Jeon, B Kim, BS Park, Y Ro | 1 | 2021 |
Encoding Weights of Irregular Sparsity for Fixed-to-Fixed Model Compression B Park, SJ Kwon, D Oh, B Kim, D Lee arXiv preprint arXiv:2105.01869, 2021 | | 2021 |
Modulating Regularization Frequency for Efficient Compression-Aware Model Training D Lee, SJ Kwon, B Kim, J Yun, B Park, Y Jeon arXiv preprint arXiv:2105.01875, 2021 | | 2021 |
Sequential Encryption of Sparse Neural Networks Toward Optimum Representation of Irregular Sparsity. B Park, SJ Kwon, D Lee, D Oh, B Kim, Y Jeon, Y Ro CoRR, 2021 | | 2021 |
Structured Compression by Unstructured Pruning for Sparse Quantized Neural Networks. SJ Kwon, D Lee, B Kim, P Kapoor, B Park, GY Wei CoRR, 2019 | | 2019 |
Winning Both the Accuracy of Floating Point Activation and the Simplicity of Integer Arithmetic Y Kim, J Jang, J Lee, J Park, J Kim, B Kim, SJ Kwon, D Lee The Eleventh International Conference on Learning Representations, 0 | | |
Network Pruning for Low-Rank Binary Index D Lee, SJ Kwon, B Kim, P Kapoor, GY Wei | | |
Decoupling Weight Regularization from Batch Size for Model Compression D Lee, SJ Kwon, B Kim, Y Jeon, B Park, J Yun, GY Wei | | |