Follow
Benjamin Hilprecht
Benjamin Hilprecht
Research Assistant, Data Management Lab, Computer Science
Verified email at cs.tu-darmstadt.de
Title
Cited by
Cited by
Year
DeepDB: learn from data, not from queries!
B Hilprecht, A Schmidt, M Kulessa, A Molina, K Kersting, C Binnig
PVLDB 13 (7), 992--1005, 2020
1072020
Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models.
B Hilprecht, M Härterich, D Bernau
Proc. Priv. Enhancing Technol. 2019 (4), 232-249, 2019
632019
Learning a partitioning advisor for cloud databases
B Hilprecht, C Binnig, U Röhm
Proceedings of the 2020 ACM SIGMOD International Conference on Management of …, 2020
42*2020
Towards learning a partitioning advisor with deep reinforcement learning
B Hilprecht, C Binnig, U Röhm
Proceedings of the Second International Workshop on Exploiting Artificial …, 2019
192019
Model-based approximate query processing
M Kulessa, A Molina, C Binnig, B Hilprecht, K Kersting
arXiv preprint arXiv:1811.06224, 2018
142018
DBMS Fitting: Why should we learn what we already know?
B Hilprecht, C Binnig, T Bang, M El-Hindi, B Hättasch, A Khanna, ...
CIDR, 2020
52020
One model to rule them all: towards zero-shot learning for databases
B Hilprecht, C Binnig
arXiv preprint arXiv:2105.00642, 2021
42021
Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction
B Hilprecht, C Binnig
arXiv preprint arXiv:2201.00561, 2022
22022
ReStore-Neural Data Completion for Relational Databases
B Hilprecht, C Binnig
Proceedings of the 2021 International Conference on Management of Data, 710-722, 2021
12021
DiffML: End-to-end Differentiable ML Pipelines
B Hilprecht, C Hammacher, E Reis, M Abdelaal, C Binnig
arXiv preprint arXiv:2207.01269, 2022
2022
Computer systems for detecting training data usage in generative models
M Haerterich, B Hilprecht, D Bernau
US Patent 11,366,982, 2022
2022
Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases
M Gassen, B Hättasch, B Hilprecht, N Geisler, A Fraser, C Binnig
arXiv preprint arXiv:2203.14144, 2022
2022
Accurately identifying members of training data in variational autoencoders by reconstruction error
B Hilprecht, D Bernau, M Haerterich
US Patent App. 16/219,645, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–13