ÆÈ·Î¿ì
Sharon Yixuan Li
Sharon Yixuan Li
cs.wisc.eduÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Stacked Generative Adversarial Networks
X Huang, Y Li, O Poursaeed, J Hopcroft, S Belongie
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
3447*2017
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
S Liang, Y Li, R Srikant
International Conference on Learning Representation (ICLR'18), 2018
16262018
Exploring the limits of weakly supervised pretraining
D Mahajan, R Girshick, V Ramanathan, K He, M Paluri, Y Li, A Bharambe, ...
Proceedings of the European conference on computer vision (ECCV), 181-196, 2018
13272018
Snapshot Ensembles: Train 1, Get M for Free
G Huang*, Y Li*, G Pleiss, Z Liu, JE Hopcroft, KQ Weinberger
International Conference on Learning Representation (ICLR 2017), 2017
8992017
Energy-based Out-of-distribution Detection
W Liu, X Wang, J Owens, Y Li
Advances in Neural Information Processing Systems 33, 2020
6322020
Generalized out-of-distribution detection: A survey
J Yang, K Zhou, Y Li, Z Liu
arXiv preprint arXiv:2110.11334, 2021
3492021
Convergent Learning: Do different neural networks learn the same representations?
Y Li, J Yosinski, J Clune, H Lipson, J Hopcroft
International Conference on Learning Representation (ICLR), 2016
2922016
ReAct: Out-of-distribution Detection With Rectified Activations
Y Sun, C Guo, Y Li
Advances in Neural Information Processing Systems 34, 144-157, 2021
1682021
Uncovering the small community structure in large networks: A local spectral approach
Y Li, K He, D Bindel, JE Hopcroft
Proceedings of the 24th international conference on world wide web, 658-668, 2015
1412015
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
R Huang, A Geng, Y Li
Advances in Neural Information Processing Systems (NeurIPS), 2021
1372021
Out-of-Distribution Detection with Deep Nearest Neighbors
Y Sun, Y Ming, X Zhu, Y Li
In Proceedings of International Conference on Machine Learning (ICML), 2022
1202022
VOS: Learning What You Don't Know by Virtual Outlier Synthesis
X Du, Z Wang, M Cai, Y Li
Proceedings of the International Conference on Learning Representations 1 (4), 8, 2022
1092022
The Lifecycle and Cascade of Social Messaging Groups
J Qiu, Y Li, J Tang, Z Lu, H Ye, B Chen, Q Yang, JE Hopcroft
Proceedings of the 25th International Conference on World Wide Web, 311-320, 2016
992016
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
R Huang, Y Li
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ¡¦, 2021
952021
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges
M Salehi, H Mirzaei, D Hendrycks, Y Li, MH Rohban, M Sabokrou
Transactions on Machine Learning Research (TMLR), 2022
942022
Local spectral clustering for overlapping community detection
Y Li, K He, K Kloster, D Bindel, J Hopcroft
ACM Transactions on Knowledge Discovery from Data (TKDD) 12 (2), 1-27, 2018
94*2018
Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
K Goel, A Gu, Y Li, C Ré
International Conference on Learning Representation (ICLR), 2021
872021
Deep manifold traversal: Changing labels with convolutional features
JR Gardner, P Upchurch, MJ Kusner, Y Li, KQ Weinberger, K Bala, ...
arXiv preprint arXiv:1511.06421, 2015
832015
Detecting overlapping communities from local spectral subspaces
K He, Y Sun, D Bindel, J Hopcroft, Y Li
2015 IEEE international conference on data mining, 769-774, 2015
822015
MOOD: Multi-level Out-of-distribution Detection
Z Lin, SD Roy, Y Li
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ¡¦, 2021
802021
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20