Æȷοì
Neil Shah
Neil Shah
Research Scientist at Snap
snap.comÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
False information on web and social media: A survey
S Kumar, N Shah
arXiv preprint arXiv:1804.08559, 2018
5272018
Data Augmentation for Graph Neural Networks
T Zhao, Y Liu, L Neves, O Woodford, M Jiang, N Shah
AAAI, 2021
4082021
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage
B Hooi, HA Song, A Beutel, N Shah, K Shin, C Faloutsos
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge ¡¦, 2016
3922016
Is Homophily a Necessity for Graph Neural Networks?
Y Ma, X Liu, N Shah, J Tang
ICLR, 2022
2612022
Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal data
S Lakshminarasimhan, N Shah, S Ethier, S Klasky, R Latham, R Ross, ...
Euro-Par 2011 Parallel Processing: 17th International Conference, Euro-Par ¡¦, 2011
2462011
TimeCrunch: Interpretable Dynamic Graph Summarization
N Shah, D Koutra, T Zou, B Gallagher, C Faloutsos
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge ¡¦, 2015
1822015
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
S Zhang, Y Liu, Y Sun, N Shah
ICLR, 2022
1742022
DeltaCon: Principled Massive-Graph Similarity Function with Attribution
D Koutra, N Shah, JT Vogelstein, B Gallagher, C Faloutsos
ACM Transactions on Knowledge Discovery from Data (TKDD) 10 (3), 28, 2016
1652016
A unified view on graph neural networks as graph signal denoising
Y Ma, X Liu, T Zhao, Y Liu, J Tang, N Shah
Proceedings of the 30th ACM International Conference on Information ¡¦, 2021
1632021
Birdnest: Bayesian inference for ratings-fraud detection
B Hooi, N Shah, A Beutel, S Günnemann, L Akoglu, M Kumar, D Makhija, ...
Proceedings of the 2016 SIAM International Conference on Data Mining, 495-503, 2016
1572016
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
L Zhao, W Jin, L Akoglu, N Shah
ICLR, 2022
1522022
Spotting suspicious link behavior with fbox: An adversarial perspective
N Shah, A Beutel, B Gallagher, C Faloutsos
2014 IEEE International Conference on Data Mining, 959-964, 2014
1322014
Graph Condensation for Graph Neural Networks
W Jin, L Zhao, S Zhang, Y Liu, J Tang, N Shah
ICLR, 2022
1312022
Semi-supervised Content-based Detection of Misinformation via Tensor Embeddings
GB Guacho, S Abdali, N Shah, EE Papalexakis
2018 IEEE/ACM International Conference on Advances in Social Networks ¡¦, 2018
1262018
ISABELA for effective in situ compression of scientific data
S Lakshminarasimhan, N Shah, S Ethier, SH Ku, CS Chang, S Klasky, ...
Concurrency and Computation: Practice and Experience 25 (4), 524-540, 2013
1152013
Graph data augmentation for graph machine learning: A survey
T Zhao, W Jin, Y Liu, Y Wang, G Liu, S Günnemann, N Shah, M Jiang
arXiv preprint arXiv:2202.08871, 2022
1022022
ISOBAR preconditioner for effective and high-throughput lossless data compression
ER Schendel, Y Jin, N Shah, J Chen, CS Chang, SH Ku, S Ethier, ...
2012 IEEE 28th international conference on data engineering, 138-149, 2012
872012
Graph-based fraud detection in the face of camouflage
B Hooi, K Shin, HA Song, A Beutel, N Shah, C Faloutsos
ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (4), 1-26, 2017
862017
Edgecentric: Anomaly detection in edge-attributed networks
N Shah, A Beutel, B Hooi, L Akoglu, S Gunnemann, D Makhija, M Kumar, ...
2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW ¡¦, 2016
862016
Automated Self-Supervised Learning for Graphs
W Jin, X Liu, X Zhao, Y Ma, N Shah, J Tang
ICLR, 2022
782022
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20