Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems T Chen, M Li, Y Li, M Lin, N Wang, M Wang, T Xiao, B Xu, C Zhang, ... arXiv preprint arXiv:1512.01274, 2015 | 1655 | 2015 |
Empirical evaluation of rectified activations in convolutional network B Xu, N Wang, T Chen, M Li arXiv preprint arXiv:1505.00853, 2015 | 1524 | 2015 |
Scaling distributed machine learning with the parameter server M Li, DG Andersen, JW Park, AJ Smola, A Ahmed, V Josifovski, J Long, ... 11th {USENIX} Symposium on Operating Systems Design and Implementation …, 2014 | 1157 | 2014 |
Efficient mini-batch training for stochastic optimization M Li, T Zhang, Y Chen, AJ Smola Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014 | 528 | 2014 |
Communication efficient distributed machine learning with the parameter server M Li, DG Andersen, AJ Smola, K Yu Advances in Neural Information Processing Systems 27, 19-27, 2014 | 396 | 2014 |
Emotion classification based on gamma-band EEG M Li, BL Lu 2009 Annual International Conference of the IEEE Engineering in medicine and …, 2009 | 325 | 2009 |
Bag of tricks for image classification with convolutional neural networks T He, Z Zhang, H Zhang, Z Zhang, J Xie, M Li Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019 | 294 | 2019 |
Parameter Server for Distributed Machine Learning M Li, L Zhou, Z Yang, A Li, F Xia, DG Andersen, A Smola | 144 | 2013 |
Making large-scale Nyström approximation possible M Li, JTY Kwok, B Lü ICML 2010-Proceedings, 27th International Conference on Machine Learning, 631, 2010 | 123 | 2010 |
Dive into deep learning A Zhang, ZC Lipton, M Li, AJ Smola Unpublished Draft. Retrieved 19, 2019, 2019 | 115* | 2019 |
Resnest: Split-attention networks H Zhang, C Wu, Z Zhang, Y Zhu, Z Zhang, H Lin, Y Sun, T He, J Mueller, ... arXiv preprint arXiv:2004.08955, 2020 | 103 | 2020 |
Large-scale Nyström kernel matrix approximation using randomized SVD M Li, W Bi, JT Kwok, BL Lu IEEE transactions on neural networks and learning systems 26 (1), 152-164, 2014 | 87 | 2014 |
Iterative row sampling M Li, GL Miller, R Peng 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 127-136, 2013 | 77 | 2013 |
Time and space efficient spectral clustering via column sampling M Li, XC Lian, JT Kwok, BL Lu CVPR 2011, 2297-2304, 2011 | 65 | 2011 |
xgboost: extreme gradient boosting. R package version 0.71. 2 T Chen, T He, M Benesty, V Khotilovich, Y Tang, H Cho, K Chen, ... | 59 | 2018 |
Difacto: Distributed factorization machines M Li, Z Liu, AJ Smola, YX Wang Proceedings of the Ninth ACM International Conference on Web Search and Data …, 2016 | 54 | 2016 |
Distributed delayed proximal gradient methods M Li, DG Andersen, A Smola NIPS Workshop on Optimization for Machine Learning 3, 3, 2013 | 52 | 2013 |
Bag of freebies for training object detection neural networks Z Zhang, T He, H Zhang, Z Zhang, J Xie, M Li arXiv preprint arXiv:1902.04103, 2019 | 51 | 2019 |
Inferring movement trajectories from GPS snippets M Li, A Ahmed, AJ Smola Proceedings of the Eighth ACM International Conference on Web Search and …, 2015 | 47 | 2015 |
Revise saturated activation functions B Xu, R Huang, M Li arXiv preprint arXiv:1602.05980, 2016 | 46 | 2016 |