Tensor decompositions for learning latent variable models A Anandkumar, R Ge, D Hsu, SM Kakade, M Telgarsky arXiv preprint arXiv:1210.7559 64, 70-72, 0 | 964* | |
Born again neural networks T Furlanello, Z Lipton, M Tschannen, L Itti, A Anandkumar International Conference on Machine Learning, 1607-1616, 2018 | 373 | 2018 |
A method of moments for mixture models and hidden Markov models A Anandkumar, D Hsu, SM Kakade Conference on Learning Theory, 33.1-33.34, 2012 | 319 | 2012 |
Distributed algorithms for learning and cognitive medium access with logarithmic regret A Anandkumar, N Michael, AK Tang, A Swami IEEE Journal on Selected Areas in Communications 29 (4), 731-745, 2011 | 293 | 2011 |
Stochastic activation pruning for robust adversarial defense GS Dhillon, K Azizzadenesheli, ZC Lipton, J Bernstein, J Kossaifi, ... arXiv preprint arXiv:1803.01442, 2018 | 289 | 2018 |
signSGD: Compressed optimisation for non-convex problems J Bernstein, YX Wang, K Azizzadenesheli, A Anandkumar International Conference on Machine Learning, 560-569, 2018 | 283 | 2018 |
A spectral algorithm for latent dirichlet allocation A Anandkumar, DP Foster, D Hsu, SM Kakade, YK Liu Algorithmica 72 (1), 193-214, 2015 | 281 | 2015 |
Non-convex robust PCA P Netrapalli, UN Niranjan, S Sanghavi, A Anandkumar, P Jain arXiv preprint arXiv:1410.7660, 2014 | 270 | 2014 |
Learning latent tree graphical models MJ Choi, VYF Tan, A Anandkumar, AS Willsky Journal of Machine Learning Research 12, 1771-1812, 2011 | 249 | 2011 |
A tensor spectral approach to learning mixed membership community models A Anandkumar, R Ge, D Hsu, S Kakade Conference on Learning Theory, 867-881, 2013 | 246 | 2013 |
Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods M Janzamin, H Sedghi, A Anandkumar arXiv preprint arXiv:1506.08473, 2015 | 217 | 2015 |
Deep active learning for named entity recognition Y Shen, H Yun, ZC Lipton, Y Kronrod, A Anandkumar arXiv preprint arXiv:1707.05928, 2017 | 205 | 2017 |
Opportunistic spectrum access with multiple users: Learning under competition A Anandkumar, N Michael, A Tang 2010 Proceedings IEEE INFOCOM, 1-9, 2010 | 177 | 2010 |
Learning sparsely used overcomplete dictionaries via alternating minimization A Agarwal, A Anandkumar, P Jain, P Netrapalli SIAM Journal on Optimization 26 (4), 2775-2799, 2016 | 157 | 2016 |
Tensorly: Tensor learning in python J Kossaifi, Y Panagakis, A Anandkumar, M Pantic arXiv preprint arXiv:1610.09555, 2016 | 144 | 2016 |
Efficient approaches for escaping higher order saddle points in non-convex optimization A Anandkumar, R Ge Conference on learning theory, 81-102, 2016 | 128 | 2016 |
High-dimensional structure estimation in Ising models: Local separation criterion A Anandkumar, VYF Tan, F Huang, AS Willsky The Annals of Statistics 40 (3), 1346-1375, 2012 | 126* | 2012 |
Learning sparsely used overcomplete dictionaries A Agarwal, A Anandkumar, P Jain, P Netrapalli, R Tandon Conference on Learning Theory, 123-137, 2014 | 109 | 2014 |
Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank- Updates A Anandkumar, R Ge, M Janzamin arXiv preprint arXiv:1402.5180, 2014 | 108 | 2014 |
Fast and guaranteed tensor decomposition via sketching Y Wang, HY Tung, A Smola, A Anandkumar arXiv preprint arXiv:1506.04448, 2015 | 106 | 2015 |