Philip Becker-Ehmck
Philip Becker-Ehmck
Research Scientist at Volkswagen Machine Learning Research Lab
Verified email at
Cited by
Cited by
Unsupervised real-time control through variational empowerment
M Karl, P Becker-Ehmck, M Soelch, D Benbouzid, P van der Smagt, ...
Robotics Research: The 19th International Symposium ISRR, 158-173, 2022
Switching Linear Dynamics for Variational Bayes Filtering
P Becker-Ehmck, J Peters, P van der Smagt
36th International Conference on Machine Learning (ICML), 2018
Learning to Fly via Deep Model-Based Reinforcement Learning
P Becker-Ehmck, M Karl, J Peters, P van der Smagt
arXiv preprint arXiv:2003.08876, 2020
Beta DVBF: Learning State-Space Models for Control from High Dimensional Observations
N Das, M Karl, P Becker-Ehmck, P van der Smagt
arXiv preprint arXiv:1911.00756, 2019
Exploration via Empowerment Gain: Combining Novelty, Surprise and Learning Progress
P Becker-Ehmck, M Karl, J Peters, P van der Smagt
ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021
Latent State-Space Models for Control
P Becker-Ehmck
Technische Universitšt Darmstadt, 0
The system can't perform the operation now. Try again later.
Articles 1–6