Æȷοì
Stefanie Jegelka
Stefanie Jegelka
TUM and MIT
mit.eduÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
How powerful are graph neural networks?
K Xu, W Hu, J Leskovec, S Jegelka
arXiv preprint arXiv:1810.00826, 2018
89732018
Representation learning on graphs with jumping knowledge networks
K Xu, C Li, Y Tian, T Sonobe, K Kawarabayashi, S Jegelka
International Conference on Machine Learning, 5453-5462, 2018
23042018
Deep metric learning via lifted structured feature embedding
H Oh Song, Y Xiang, S Jegelka, S Savarese
Proceedings of the IEEE Conference on Computer Vision and Pattern ¡¦, 2016
20482016
Contrastive learning with hard negative samples
J Robinson, SJ Chuang, Ching-Yao, Suvrit Sra
International Conference on Learning Representations, 2021
8362021
Debiased contrastive learning
CY Chuang, J Robinson, YC Lin, A Torralba, S Jegelka
Advances in Neural Information Processing Systems 33, 2020
6572020
Max-value entropy search for efficient Bayesian optimization
Z Wang, S Jegelka
Proceedings of the 34th International Conference on Machine Learning-Volume ¡¦, 2017
4982017
Deep Metric Learning via Facility Location
HO Song, S Jegelka, V Rathod, K Murphy
CVPR, 2017
3822017
How neural networks extrapolate: From feedforward to graph neural networks
K Xu, M Zhang, J Li, SS Du, K Kawarabayashi, S Jegelka
arXiv preprint arXiv:2009.11848, 2020
3492020
Generalization and representational limits of graph neural networks
V Garg, S Jegelka, T Jaakkola
International Conference on Machine Learning, 3419-3430, 2020
3352020
What Can Neural Networks Reason About?
K Xu, J Li, M Zhang, SS Du, K Kawarabayashi, S Jegelka
arXiv preprint arXiv:1905.13211, 2019
2972019
On learning to localize objects with minimal supervision
HO Song, R Girshick, S Jegelka, J Mairal, Z Harchaoui, T Darrell
International Conference on Machine Learning (ICML), 2014
2912014
Resnet with one-neuron hidden layers is a universal approximator
H Lin, S Jegelka
Advances in neural information processing systems 31, 6169-6178, 2018
2852018
Submodularity beyond submodular energies: coupling edges in graph cuts
S Jegelka, J Bilmes
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on ¡¦, 2011
2532011
Batched large-scale bayesian optimization in high-dimensional spaces
Z Wang, C Gehring, P Kohli, S Jegelka
International Conference on Artificial Intelligence and Statistics, 745-754, 2018
2272018
Weakly-supervised discovery of visual pattern configurations
HO Song, YJ Lee, S Jegelka, T Darrell
Advances in neural information processing systems 27, 1637-1645, 2014
1942014
Distributionally robust optimization and generalization in kernel methods
M Staib, S Jegelka
Advances in Neural Information Processing Systems, 9134-9144, 2019
1582019
Adversarially robust optimization with gaussian processes
I Bogunovic, J Scarlett, S Jegelka, V Cevher
Advances in neural information processing systems 31, 5760-5770, 2018
1512018
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
E Kim, Z Jensen, A van Grootel, K Huang, M Staib, S Mysore, HS Chang, ...
Journal of Chemical Information and Modeling 60 (3), 1194-1201, 2020
148*2020
Fast semidifferential-based submodular function optimization
R Iyer, S Jegelka, J Bilmes
International Conference on Machine Learning (ICML), 2013
1482013
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
D Lim, J Robinson, L Zhao, T Smidt, S Sra, H Maron, S Jegelka
arXiv preprint arXiv:2202.13013, 2022
1442022
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20