Metric thickenings, Borsuk–Ulam theorems, and orbitopes H Adams, J Bush, F Frick Mathematika 66 (1), 79-102, 2020 | 22 | 2020 |

Representations of energy landscapes by sublevelset persistent homology: An example with *n*-alkanesJ Mirth, Y Zhai, J Bush, EG Alvarado, H Jordan, M Heim, ... The Journal of Chemical Physics 154 (11), 114114, 2021 | 11 | 2021 |

The topology of projective codes and the distribution of zeros of odd maps H Adams, J Bush, F Frick arXiv preprint arXiv:2106.14677, 2021 | 9 | 2021 |

A torus model for optical flow H Adams, J Bush, B Carr, L Kassab, J Mirth Pattern Recognition Letters 129, 304-310, 2020 | 8 | 2020 |

On the nonlinear statistics of optical flow H Adams, J Bush, B Carr, L Kassab, J Mirth International Workshop on Computational Topology in Image Context, 151-165, 2019 | 6 | 2019 |

Gromov-Hausdorff distances, Borsuk-Ulam theorems, and Vietoris-Rips complexes H Adams, J Bush, N Clause, F Frick, M Gómez, M Harrison, RA Jeffs, ... arXiv preprint arXiv:2301.00246, 2022 | 5 | 2022 |

Toroidal Coordinates: Decorrelating Circular Coordinates With Lattice Reduction L Scoccola, H Gakhar, J Bush, N Schonsheck, T Rask, L Zhou, JA Perea arXiv preprint arXiv:2212.07201, 2022 | 4 | 2022 |

Topological Data Analysis H Adams, J Bush, J Mirth Data Science for Mathematicians, 441-474, 2020 | 4 | 2020 |

Topological, geometric, and combinatorial aspects of metric thickenings J Bush Colorado State University, 2021 | 3 | 2021 |

Operations on metric thickenings H Adams, J Bush, J Mirth arXiv preprint arXiv:2101.10489, 2021 | 3 | 2021 |

Vietoris–Rips Thickenings of the Circle and Centrally–Symmetric Orbitopes J Bush Colorado State University, 2018 | 2 | 2018 |