Phase-aware speech enhancement with deep complex u-net HS Choi, JH Kim, J Huh, A Kim, JW Ha, K Lee International Conference on Learning Representations, 2019 | 258 | 2019 |
Multi-domain processing via hybrid denoising networks for speech enhancement JH Kim, J Yoo, S Chun, A Kim, JW Ha arXiv preprint arXiv:1812.08914, 2018 | 24 | 2018 |
Automatic DJ Mix Generation using Highlight Detection A Kim, T Kwon, S Park, J Park, JW Ha, J Nam The 18th International Society for Music Information Retrieval Conference LBD, 2017 | 11 | 2017 |
Music Emotion Recognition via End-to-End Multimodal Neural Networks B Jeon, C Kim, A Kim, D Kim, J Park, JW Ha 11th ACM Conference on Recommender Systems, 2017 | 11 | 2017 |
Predicting high-risk prognosis from diagnostic histories of adult disease patients via deep recurrent neural networks JW Ha, A Kim, D Kim, J Kim, JW Kim, JJ Park, B Ryu Big Data and Smart Computing (BigComp), 2017 IEEE International Conference ¡¦, 2017 | 9 | 2017 |
Automatic music highlight extraction using convolutional recurrent attention networks JW Ha, A Kim, C Kim, J Park, S Kim arXiv preprint arXiv:1712.05901, 2017 | 8 | 2017 |
CHOPT: Automated hyperparameter optimization framework for cloud-based machine learning platforms J Kim, M Kim, H Park, E Kusdavletov, D Lee, A Kim, JH Kim, JW Ha, ... arXiv preprint arXiv:1810.03527, 2018 | 7 | 2018 |
Cross-cultural transfer learning using sample-level deep convolutional neural netowrks J Lee, J Park, J Nam, C Kim, A Kim, J Park, JW Ha Music Inf. Retrieval Eval. eX-change, 2017 | 5 | 2017 |
Modeling Musical Onset Probabilities via Neural Distribution Learning J Huh, E Martinsson, A Kim, JW Ha arXiv preprint arXiv:2002.03559, 2020 | 1 | 2020 |
Music Highlight Extraction via Convolutional Recurrent Attention Networks JW Ha, A Kim, D Kim, C Kim, J Park Machine Learning for Music Discovery Workshop at International Conference on ¡¦, 2017 | | 2017 |
Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-cuts. A Kim, K Jung, Y Lim, D Tarlow, P Kohli UAI, 435-443, 2015 | | 2015 |
Computing Expected Losses in Perturbation Models using Multidimensional Parametric Min-cuts A Kim, K Jung, D Tarlow, P Kohli Presented at the, 2014 | | 2014 |
Neural Distribution Learning for generalized time-to-event prediction E Martinsson, A Kim, J Huh, J Choo, JW Ha | | |