Follow
Karl Krauth
Karl Krauth
Postdoc, Stanford
Verified email at berkeley.edu - Homepage
Title
Cited by
Cited by
Year
Cloud programming simplified: A berkeley view on serverless computing
E Jonas, J Schleier-Smith, V Sreekanti, CC Tsai, A Khandelwal, Q Pu, ...
arXiv preprint arXiv:1902.03383, 2019
7712019
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
7682022
Serverless linear algebra
V Shankar, K Krauth, K Vodrahalli, Q Pu, B Recht, I Stoica, ...
Proceedings of the 11th ACM Symposium on Cloud Computing, 281-295, 2020
161*2020
The Effect of Natural Distribution Shift on Question Answering Models
J Miller, K Krauth, B Recht, L Schmidt
International Conference on Machine Learning, 2020
1452020
AutoGP: Exploring the capabilities and limitations of Gaussian process models
K Krauth, EV Bonilla, K Cutajar, M Filippone
Conference for Uncertainty in Artificial intelligence (UAI), 2016
662016
Finite-time analysis of approximate policy iteration for the linear quadratic regulator
K Krauth, S Tu, B Recht
Advances in Neural Information Processing Systems, 2019
532019
Do offline metrics predict online performance in recommender systems?
K Krauth, S Dean, A Zhao, W Guo, M Curmei, B Recht, MI Jordan
arXiv preprint arXiv:2011.07931, 2020
402020
Generic inference in latent Gaussian process models
EV Bonilla, K Krauth, A Dezfouli
Journal of Machine Learning Research 20 (117), 1-63, 2019
272019
Modeling content creator incentives on algorithm-curated platforms
J Hron, K Krauth, MI Jordan, N Kilbertus, S Dean
arXiv preprint arXiv:2206.13102, 2022
262022
On component interactions in two-stage recommender systems
J Hron, K Krauth, MI Jordan, N Kilbertus
Advances in Neural Information Processing Systems, 2021
242021
Breaking feedback loops in recommender systems with causal inference
K Krauth, Y Wang, MI Jordan
arXiv preprint arXiv:2207.01616, 2022
172022
The Stereotyping Problem in Collaboratively Filtered Recommender Systems
W Guo, K Krauth, MI Jordan, N Garg
ACM Conference on Equity and Access in Algorithms, Mechanisms, and …, 2021
142021
Recommendation systems with distribution-free reliability guarantees
AN Angelopoulos, K Krauth, S Bates, Y Wang, MI Jordan
Conformal and Probabilistic Prediction with Applications, 175-193, 2023
102023
Exploration in two-stage recommender systems
J Hron, K Krauth, MI Jordan, N Kilbertus
arXiv preprint arXiv:2009.08956, 2020
92020
Gonzalez Joseph E., Popa Raluca Ada, Stoica Ion, and Patterson David A.. 2019
J Eric, SS Johann, S Vikram, T Chia-Che, K Anurag, P Qifan, S Vaishaal, ...
Cloud programming simplified: A Berkeley view on serverless computing …, 0
5
Design automation of microfluidic single and double emulsion droplets with machine learning
A Lashkaripour, DP McIntyre, SGK Calhoun, K Krauth, DM Densmore, ...
Nature Communications 15 (1), 83, 2024
2024
The Dynamics of Recommender Systems
KM Krauth
University of California, Berkeley, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–17