ÆÈ·Î¿ì
Rohan Chitnis
Rohan Chitnis
Meta AI, MIT, UC Berkeley
fb.comÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Combined task and motion planning through an extensible planner-independent interface layer
S Srivastava, E Fang, L Riano, R Chitnis, S Russell, P Abbeel
2014 IEEE international conference on robotics and automation (ICRA), 639-646, 2014
5312014
Integrated task and motion planning
CR Garrett, R Chitnis, R Holladay, B Kim, T Silver, LP Kaelbling, ...
Annual review of control, robotics, and autonomous systems 4, 265-293, 2021
2152021
Guided search for task and motion plans using learned heuristics
R Chitnis, D Hadfield-Menell, A Gupta, S Srivastava, E Groshev, C Lin, ...
2016 IEEE International Conference on Robotics and Automation (ICRA), 447-454, 2016
662016
Planning with learned object importance in large problem instances using graph neural networks
T Silver, R Chitnis, A Curtis, JB Tenenbaum, T Lozano-Pérez, ...
Proceedings of the AAAI conference on artificial intelligence 35 (13), 11962 ¡¦, 2021
502021
Variable-length word encodings for neural translation models
R Chitnis, J DeNero
Proceedings of the 2015 Conference on Empirical Methods in Natural Language ¡¦, 2015
482015
Modular task and motion planning in belief space
D Hadfield-Menell, E Groshev, R Chitnis, P Abbeel
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems ¡¦, 2015
472015
PDDLGym: Gym environments from PDDL problems
T Silver, R Chitnis
arXiv preprint arXiv:2002.06432, 2020
412020
Learning symbolic operators for task and motion planning
T Silver, R Chitnis, J Tenenbaum, LP Kaelbling, T Lozano-Pérez
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems ¡¦, 2021
312021
Efficient bimanual manipulation using learned task schemas
R Chitnis, S Tulsiani, S Gupta, A Gupta
2020 IEEE International Conference on Robotics and Automation (ICRA), 1149-1155, 2020
292020
Learning quickly to plan quickly using modular meta-learning
R Chitnis, LP Kaelbling, T Lozano-Pérez
2019 International Conference on Robotics and Automation (ICRA), 7865-7871, 2019
282019
Glib: Exploration via goal-literal babbling for lifted operator learning
R Chitnis, T Silver, J Tenenbaum, LP Kaelbling, T Lozano-Perez
arXiv preprint arXiv:2001.08299, 2020
22*2020
CAMPS: Learning context-specific abstractions for efficient planning in factored MDPs
R Chitnis, T Silver, B Kim, L Kaelbling, T Lozano-Perez
Conference on Robot Learning, 64-79, 2021
212021
Learning neuro-symbolic relational transition models for bilevel planning
R Chitnis, T Silver, JB Tenenbaum, T Lozano-Perez, LP Kaelbling
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems ¡¦, 2022
202022
Learning compact models for planning with exogenous processes
R Chitnis, T Lozano-Pérez
Conference on Robot Learning, 813-822, 2020
182020
Sequential quadratic programming for task plan optimization
D Hadfield-Menell, C Lin, R Chitnis, S Russell, P Abbeel
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems ¡¦, 2016
182016
Intrinsic motivation for encouraging synergistic behavior
R Chitnis, S Tulsiani, S Gupta, A Gupta
arXiv preprint arXiv:2002.05189, 2020
172020
Reinforcement learning for classical planning: Viewing heuristics as dense reward generators
C Gehring, M Asai, R Chitnis, T Silver, L Kaelbling, S Sohrabi, M Katz
Proceedings of the International Conference on Automated Planning and ¡¦, 2022
162022
Integrating human-provided information into belief state representation using dynamic factorization
R Chitnis, LP Kaelbling, T Lozano-Pérez
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems ¡¦, 2018
152018
Inventing relational state and action abstractions for effective and efficient bilevel planning
T Silver, R Chitnis, N Kumar, W McClinton, T Lozano-Perez, LP Kaelbling, ...
arXiv preprint arXiv:2203.09634, 2022
132022
Towards optimal correlational object search
K Zheng, R Chitnis, Y Sung, G Konidaris, S Tellex
2022 International Conference on Robotics and Automation (ICRA), 7313-7319, 2022
102022
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20