Æȷοì
Lucas Maystre
Lucas Maystre
Research Scientist, UiPath
uipath.comÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Algorithmic effects on the diversity of consumption on Spotify
A Anderson, L Maystre, I Anderson, R Mehrotra, M Lalmas
Proceedings of The Web Conference 2020, 2155-2165, 2020
2442020
Fast and accurate inference of Plackett–Luce models
L Maystre, M Grossglauser
NeurIPS 2015, 2015
1542015
Contextual and sequential user embeddings for large-scale music recommendation
C Hansen, C Hansen, L Maystre, R Mehrotra, B Brost, F Tomasi, ...
RecSys 2020, 53-62, 2020
1302020
Just sort it! A simple and effective approach to active preference learning
L Maystre, M Grossglauser
ICML 2017, 2017
79*2017
Collaborative recurrent neural networks for dynamic recommender systems
YJ Ko, L Maystre, M Grossglauser
ACML 2016, 2016
692016
Shifting consumption towards diverse content on music streaming platforms
C Hansen, R Mehrotra, C Hansen, B Brost, L Maystre, M Lalmas
Proceedings of the 14th ACM international conference on web search and data ¡¦, 2021
432021
Where to next? a dynamic model of user preferences
F Sanna Passino, L Maystre, D Moor, A Anderson, M Lalmas
Proceedings of the Web Conference 2021, 3210-3220, 2021
262021
ChoiceRank: Identifying Preferences from Node Traffic in Networks
L Maystre, M Grossglauser
ICML 2017, 2017
192017
Mitigating epidemics through mobile micro-measures
M Kafsi, E Kazemi, L Maystre, L Yartseva, M Grossglauser, P Thiran
arXiv preprint arXiv:1307.2084, 2013
192013
Pairwise Comparisons with Flexible Time-Dynamics
L Maystre, V Kristof, M Grossglauser
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge ¡¦, 2019
162019
Impatient bandits: Optimizing recommendations for the long-term without delay
TM McDonald, L Maystre, M Lalmas, D Russo, K Ciosek
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and ¡¦, 2023
142023
The dynamics of exploration on spotify
L Mok, SF Way, L Maystre, A Anderson
Proceedings of the International AAAI Conference on Web and Social Media 16 ¡¦, 2022
142022
Using survival models to estimate user engagement in online experiments
P Chandar, B St. Thomas, L Maystre, V Pappu, R Sanchis-Ojeda, T Wu, ...
Proceedings of the ACM Web Conference 2022, 3186-3195, 2022
112022
Optimizing audio recommendations for the long-term: A reinforcement learning perspective
L Maystre, D Russo, Y Zhao
arXiv preprint arXiv:2302.03561, 2023
82023
Scalable and efficient comparison-based search without features
D Chumbalov, L Maystre, M Grossglauser
ICML 2020, 2020
8*2020
Can Who-Edits-What Predict Edit Survival?
AB Yardim, V Kristof, L Maystre, M Grossglauser
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge ¡¦, 2018
82018
Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding
G Van Goffrier, L Maystre, CM Gilligan-Lee
Conference on Causal Learning and Reasoning, 791-813, 2023
72023
Temporally-consistent survival analysis
L Maystre, D Russo
Advances in Neural Information Processing Systems 35, 10671-10683, 2022
72022
Choix—Inference algorithms for models based on Luce¡¯s choice axiom
L Maystre
URL https://pypi. python. org/pypi/choix, python package version 0.3 2, 2018
72018
The player kernel: learning team strengths based on implicit player contributions
L Maystre, V Kristof, AJG Ferrer, M Grossglauser
arXiv preprint arXiv:1609.01176, 2016
72016
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20