ÆÈ·Î¿ì
Ardavan Pedram
Á¦¸ñ
Àοë
Àοë
¿¬µµ
EIE: Efficient inference engine on compressed deep neural network
S Han, X Liu, H Mao, J Pu, A Pedram, MA Horowitz, WJ Dally
ACM SIGARCH Computer Architecture News 44 (3), 243-254, 2016
26612016
Plasticine: A Reconfigurable Architecture For Parallel Patterns
R Prabhakar, Y Zhang, D Koeplinger, M Feldman, T Zhao, S Hadjis, ...
44th International Symposium on Computer Architecture (ISCA 2017), 2017
2232017
Spatial: A language and compiler for application accelerators
D Koeplinger, M Feldman, R Prabhakar, Y Zhang, S Hadjis, R Fiszel, ...
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language ¡¦, 2018
1872018
Dark memory and accelerator-rich system optimization in the dark silicon era
A Pedram, S Richardson, S Galal, S Kvatinsky, M Horowitz
IEEE Design & Test 34 (2), 39-50, 2017
1202017
Codesign Tradeoffs for High-Performance, Low-Power Linear Algebra Architectures
A Pedram, A Gerstlauer, RA van de Geijn
IEEE Transactions on Computers 61 (12), 1724 - 1736, 2012
722012
A systematic approach to blocking convolutional neural networks
X Yang, J Pu, BB Rister, N Bhagdikar, S Richardson, S Kvatinsky, ...
arXiv preprint arXiv:1606.04209, 2016
602016
Deep compression and EIE: Efficient inference engine on compressed deep neural network.
S Han, X Liu, H Mao, J Pu, A Pedram, M Horowitz, B Dally
Hot Chips Symposium, 1-6, 2016
492016
Evaluating Programmable Architectures for Imaging and Vision Applications
A Vasilyev, N Bhagdikar, A Pedram, S Richardson, S Kvatinsky, ...
IEEE/ACM International Symposium on Microarchitecture, 2016
372016
Local linear model tree (LOLIMOT) reconfigurable parallel hardware
A Pedram, MR Jamali, T Pedram, SM Fakhraie, C Lucas
International Journal of Applied Science, Engineering and Technology 1, 1, 2006
352006
A high-performance, low-power linear algebra core
A Pedram, A Gerstlauer, RA Van De Geijn
Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE ¡¦, 2011
322011
CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerating the Training of Deep Neural Networks
Y Li, A Pedram
The 28th Annual IEEE International Conference on Application-specific ¡¦, 2017
242017
Modeling cache effects at the transaction level
A Pedram, D Craven, A Gerstlauer
Analysis, Architectures and Modelling of Embedded Systems: Third IFIP TC 10 ¡¦, 2009
242009
A Linear Algebra Core Design For Efficient Level-3 BLAS
A Pedram, SZ Gilani, NS Kim, R van de Geijn, M Schulte, A Gerstlauer
Application-Specific Systems, Architectures and Processors (ASAP), 2012 IEEE ¡¦, 2012
202012
Algorithm, Architecture, and Floating-Point Unit Codesign of a Matrix Factorization Accelerator
A Pedram, A Gerstlauer, RA van de Geijn
182014
A Highly Efficient Multicore Floating-Point FFT Architecture Based on Hybrid Linear Algebra/FFT Cores
A Pedram, JD McCalpin, A Gerstlauer
Journal of Signal Processing Systems, 2014
172014
Distributing congestions in NOCs through a dynamic routing algorithm based on input and output selections
M Daneshtalab, A Pedram, MH Neishaburi, M Riazati, A Afzali-Kusha, ...
VLSI Design, 2007. Held jointly with 6th International Conference on ¡¦, 2007
172007
Improving Energy Efficiency of DRAM by Exploiting Half Page Row Access
H Ha, A Pedram, S Richardson, S Kvatinsky, M Horowitz
IEEE/ACM International Symposium on Microarchitecture, 2016
152016
Transforming A Linear Algebra Core to An FFT Accelerator
A Pedram, J McCalpin, A Gerstlauer
Application-Specific Systems, Architectures and Processors (ASAP), 2013 IEEE ¡¦, 2013
142013
On the efficiency of register file versus broadcast interconnect for collective communications in data-parallel hardware accelerators
A Pedram, A Gerstlauer, RA van de Geijn
2012 IEEE 24th International Symposium on Computer Architecture and High ¡¦, 2012
132012
Plasticine: A reconfigurable accelerator for parallel patterns
R Prabhakar, Y Zhang, D Koeplinger, M Feldman, T Zhao, S Hadjis, ...
IEEE Micro 38 (3), 20-31, 2018
122018
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20