Follow
Roger Grosse
Roger Grosse
Associate Professor, University of Toronto
Verified email at cs.toronto.edu - Homepage
Title
Cited by
Cited by
Year
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
H Lee, R Grosse, R Ranganath, AY Ng
International Conference on Machine Learning, 609-616, 2009
32002009
Importance weighted autoencoders
Y Burda, R Grosse, R Salakhutdinov
arXiv preprint arXiv:1509.00519, 2015
10442015
Isolating sources of disentanglement in variational autoencoders
RTQ Chen, X Li, RB Grosse, DK Duvenaud
Advances in neural information processing systems 31, 2018
8522018
Optimizing neural networks with kronecker-factored approximate curvature
J Martens, R Grosse
International conference on machine learning, 2408-2417, 2015
6442015
Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation
Y Wu, E Mansimov, RB Grosse, S Liao, J Ba
Advances in neural information processing systems 30, 2017
6152017
Structure discovery in nonparametric regression through compositional kernel search
D Duvenaud, J Lloyd, R Grosse, J Tenenbaum, G Zoubin
International Conference on Machine Learning, 1166-1174, 2013
4942013
Unsupervised learning of hierarchical representations with convolutional deep belief networks
H Lee, R Grosse, R Ranganath, AY Ng
Communications of the ACM 54 (10), 95-103, 2011
4602011
Ground truth dataset and baseline evaluations for intrinsic image algorithms
R Grosse, MK Johnson, EH Adelson, WT Freeman
International Conference on Computer Vision, 2335-2342, 2009
4472009
The reversible residual network: Backpropagation without storing activations
AN Gomez, M Ren, R Urtasun, RB Grosse
Advances in neural information processing systems 30, 2017
3672017
Shift-invariant sparse coding for audio classification
R Grosse, R Raina, H Kwong, AY Ng
Uncertainty in AI, 2007
327*2007
Picking winning tickets before training by preserving gradient flow
C Wang, G Zhang, R Grosse
arXiv preprint arXiv:2002.07376, 2020
2432020
Automatic construction and natural-language description of nonparametric regression models
J Lloyd, D Duvenaud, R Grosse, J Tenenbaum, Z Ghahramani
Proceedings of the AAAI Conference on Artificial Intelligence 28 (1), 2014
2432014
On the quantitative analysis of decoder-based generative models
Y Wu, Y Burda, R Salakhutdinov, R Grosse
arXiv preprint arXiv:1611.04273, 2016
2252016
Flipout: Efficient pseudo-independent weight perturbations on mini-batches
Y Wen, P Vicol, J Ba, D Tran, R Grosse
arXiv preprint arXiv:1803.04386, 2018
2132018
A kronecker-factored approximate fisher matrix for convolution layers
R Grosse, J Martens
International Conference on Machine Learning, 573-582, 2016
1942016
Sorting out Lipschitz function approximation
C Anil, J Lucas, R Grosse
International Conference on Machine Learning, 291-301, 2019
1922019
Functional variational Bayesian neural networks
S Sun, G Zhang, J Shi, R Grosse
arXiv preprint arXiv:1903.05779, 2019
1802019
Noisy natural gradient as variational inference
G Zhang, S Sun, D Duvenaud, R Grosse
International Conference on Machine Learning, 5852-5861, 2018
1662018
Three mechanisms of weight decay regularization
G Zhang, C Wang, B Xu, R Grosse
arXiv preprint arXiv:1810.12281, 2018
1522018
Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions
M MacKay, P Vicol, J Lorraine, D Duvenaud, R Grosse
arXiv preprint arXiv:1903.03088, 2019
1002019
The system can't perform the operation now. Try again later.
Articles 1–20