Follow
Zhiheng Ma (马智恒)
Title
Cited by
Cited by
Year
Bayesian loss for crowd count estimation with point supervision
Z Ma, X Wei, X Hong, Y Gong
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
4092019
Transductive semi-supervised deep learning using min-max features
W Shi, Y Gong, C Ding, Z Ma, X Tao, N Zheng
Proceedings of the European Conference on Computer Vision (ECCV), 299-315, 2018
2242018
Boosting crowd counting via multifaceted attention
H Lin, Z Ma, R Ji, Y Wang, X Hong
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
622022
Learning to Count via Unbalanced Optimal Transport
Z Ma, X Wei, X Hong, H Lin, Y Qiu, Y Gong
Proceedings of the AAAI Conference on Artificial Intelligence, 2021
512021
Superpixel Masking and Inpainting for Self-Supervised Anomaly Detection
Z Li, N Li, K Jiang, Z Ma, X Wei, X Hong, Y Gong
31th British Machine Vision Conference (BMVC), 2020
502020
Towards a universal model for cross-dataset crowd counting
Z Ma, X Hong, X Wei, Y Qiu, Y Gong
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
362021
Learning scales from points: A scale-aware probabilistic model for crowd counting
Z Ma, X Wei, X Hong, Y Gong
Proceedings of the 28th ACM International Conference on Multimedia, 220-228, 2020
332020
Transductive semi-supervised metric learning for person re-identification
X Chang, Z Ma, X Wei, X Hong, Y Gong
Pattern Recognition 108, 107569, 2020
292020
Direct measure matching for crowd counting
H Lin, X Hong, Z Ma, X Wei, Y Qiu, Y Wang, Y Gong
Proceedings of the Thirtieth International Joint Conference on Artificial …, 2021
272021
Error-Aware Density Isomorphism Reconstruction for Unsupervised Cross-Domain Crowd Counting
Y He, Z Ma, X Wei, X Hong, W Ke, Y Gong
Proceedings of the AAAI Conference on Artificial Intelligence, 2021
232021
Anomaly detection via self-organizing map
N Li, K Jiang, Z Ma, X Wei, X Hong, Y Gong
2021 IEEE International Conference on Image Processing (ICIP), 974-978, 2021
182021
Eccnas: Efficient crowd counting neural architecture search
Y Wang, Z Ma, X Wei, S Zheng, Y Wang, X Hong
ACM Transactions on Multimedia Computing, Communications, and Applications …, 2022
142022
Semi-supervised crowd counting via density agency
H Lin, Z Ma, X Hong, Y Wang, Z Su
Proceedings of the 30th ACM International Conference on Multimedia, 1416-1426, 2022
92022
Can sam count anything? an empirical study on sam counting
Z Ma, X Hong, Q Shangguan
arXiv preprint arXiv:2304.10817, 2023
52023
Isolation and impartial aggregation: A paradigm of incremental learning without interference
Y Wang, Z Ma, Z Huang, Y Wang, Z Su, X Hong
Proceedings of the AAAI Conference on Artificial Intelligence 37 (8), 10209 …, 2023
42023
Semi-Supervised Crowd Counting via Multiple Representation Learning
X Wei, Y Qiu, Z Ma, X Hong, Y Gong
IEEE Transactions on Image Processing, 2023
2023
Topology-preserving transfer learning for weakly-supervised anomaly detection and segmentation
S Wei, X Wei, MR Kurniawan, Z Ma, Y Gong
Pattern Recognition Letters 170, 77-84, 2023
2023
Remind of the Past: Incremental Learning with Analogical Prompts
Z Ma, X Hong, B Liu, Y Wang, P Guo, H Li
arXiv preprint arXiv:2303.13898, 2023
2023
Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous Cleaning
Y Wang, X Hong, Z Ma, B Qin, Z Su
arXiv preprint arXiv:2303.06531, 2023
2023
Semi-supervised Counting via Pixel-by-pixel Density Distribution Modelling
LIN Hui, Z Ma, R Ji, Y Wang, X Hong
2022
The system can't perform the operation now. Try again later.
Articles 1–20