Bayesian loss for crowd count estimation with point supervision Z Ma, X Wei, X Hong, Y Gong Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 409 | 2019 |
Transductive semi-supervised deep learning using min-max features W Shi, Y Gong, C Ding, Z Ma, X Tao, N Zheng Proceedings of the European Conference on Computer Vision (ECCV), 299-315, 2018 | 224 | 2018 |
Boosting crowd counting via multifaceted attention H Lin, Z Ma, R Ji, Y Wang, X Hong Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 62 | 2022 |
Learning to Count via Unbalanced Optimal Transport Z Ma, X Wei, X Hong, H Lin, Y Qiu, Y Gong Proceedings of the AAAI Conference on Artificial Intelligence, 2021 | 51 | 2021 |
Superpixel Masking and Inpainting for Self-Supervised Anomaly Detection Z Li, N Li, K Jiang, Z Ma, X Wei, X Hong, Y Gong 31th British Machine Vision Conference (BMVC), 2020 | 50 | 2020 |
Towards a universal model for cross-dataset crowd counting Z Ma, X Hong, X Wei, Y Qiu, Y Gong Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 36 | 2021 |
Learning scales from points: A scale-aware probabilistic model for crowd counting Z Ma, X Wei, X Hong, Y Gong Proceedings of the 28th ACM International Conference on Multimedia, 220-228, 2020 | 33 | 2020 |
Transductive semi-supervised metric learning for person re-identification X Chang, Z Ma, X Wei, X Hong, Y Gong Pattern Recognition 108, 107569, 2020 | 29 | 2020 |
Direct measure matching for crowd counting H Lin, X Hong, Z Ma, X Wei, Y Qiu, Y Wang, Y Gong Proceedings of the Thirtieth International Joint Conference on Artificial …, 2021 | 27 | 2021 |
Error-Aware Density Isomorphism Reconstruction for Unsupervised Cross-Domain Crowd Counting Y He, Z Ma, X Wei, X Hong, W Ke, Y Gong Proceedings of the AAAI Conference on Artificial Intelligence, 2021 | 23 | 2021 |
Anomaly detection via self-organizing map N Li, K Jiang, Z Ma, X Wei, X Hong, Y Gong 2021 IEEE International Conference on Image Processing (ICIP), 974-978, 2021 | 18 | 2021 |
Eccnas: Efficient crowd counting neural architecture search Y Wang, Z Ma, X Wei, S Zheng, Y Wang, X Hong ACM Transactions on Multimedia Computing, Communications, and Applications …, 2022 | 14 | 2022 |
Semi-supervised crowd counting via density agency H Lin, Z Ma, X Hong, Y Wang, Z Su Proceedings of the 30th ACM International Conference on Multimedia, 1416-1426, 2022 | 9 | 2022 |
Can sam count anything? an empirical study on sam counting Z Ma, X Hong, Q Shangguan arXiv preprint arXiv:2304.10817, 2023 | 5 | 2023 |
Isolation and impartial aggregation: A paradigm of incremental learning without interference Y Wang, Z Ma, Z Huang, Y Wang, Z Su, X Hong Proceedings of the AAAI Conference on Artificial Intelligence 37 (8), 10209 …, 2023 | 4 | 2023 |
Semi-Supervised Crowd Counting via Multiple Representation Learning X Wei, Y Qiu, Z Ma, X Hong, Y Gong IEEE Transactions on Image Processing, 2023 | | 2023 |
Topology-preserving transfer learning for weakly-supervised anomaly detection and segmentation S Wei, X Wei, MR Kurniawan, Z Ma, Y Gong Pattern Recognition Letters 170, 77-84, 2023 | | 2023 |
Remind of the Past: Incremental Learning with Analogical Prompts Z Ma, X Hong, B Liu, Y Wang, P Guo, H Li arXiv preprint arXiv:2303.13898, 2023 | | 2023 |
Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous Cleaning Y Wang, X Hong, Z Ma, B Qin, Z Su arXiv preprint arXiv:2303.06531, 2023 | | 2023 |
Semi-supervised Counting via Pixel-by-pixel Density Distribution Modelling LIN Hui, Z Ma, R Ji, Y Wang, X Hong | | 2022 |