ÆÈ·Î¿ì
Peter Bartlett
Peter Bartlett
Professor, EECS and Statistics, UC Berkeley
cs.berkeley.eduÀÇ À̸ÞÀÏ È®ÀÎµÊ - ȨÆäÀÌÁö
Á¦¸ñ
Àοë
Àοë
¿¬µµ
Boosting the margin: A new explanation for the effectiveness of voting methods
P Bartlett, Y Freund, WS Lee, RE Schapire
The annals of statistics 26 (5), 1651-1686, 1998
38321998
New support vector algorithms
B Schölkopf, AJ Smola, RC Williamson, PL Bartlett
Neural computation 12 (5), 1207-1245, 2000
36582000
Learning the kernel matrix with semidefinite programming
GRG Lanckriet, N Cristianini, P Bartlett, LE Ghaoui, MI Jordan
Journal of Machine learning research 5 (Jan), 27-72, 2004
30762004
Rademacher and Gaussian complexities: Risk bounds and structural results
PL Bartlett, S Mendelson
Journal of Machine Learning Research 3 (Nov), 463-482, 2002
27662002
Neural network learning: Theoretical foundations
M Anthony, PL Bartlett, PL Bartlett
cambridge university press, 1999
24331999
For valid generalization the size of the weights is more important than the size of the network
P Bartlett
Advances in neural information processing systems 9, 1996
18331996
A framework for learning predictive structures from multiple tasks and unlabeled data.
RK Ando, T Zhang, P Bartlett
Journal of Machine Learning Research 6 (11), 2005
16892005
Convexity, classification, and risk bounds
PL Bartlett, MI Jordan, JD McAuliffe
Journal of the American Statistical Association 101 (473), 138-156, 2006
16212006
Boosting algorithms as gradient descent
L Mason, J Baxter, P Bartlett, M Frean
Advances in neural information processing systems 12, 1999
14441999
Infinite-horizon policy-gradient estimation
J Baxter, PL Bartlett
journal of artificial intelligence research 15, 319-350, 2001
11832001
Spectrally-normalized margin bounds for neural networks
PL Bartlett, DJ Foster, MJ Telgarsky
Advances in neural information processing systems 30, 2017
11392017
Byzantine-robust distributed learning: Towards optimal statistical rates
D Yin, Y Chen, R Kannan, P Bartlett
International Conference on Machine Learning, 5650-5659, 2018
10432018
RL: Fast Reinforcement Learning via Slow Reinforcement Learning
Y Duan, J Schulman, X Chen, PL Bartlett, I Sutskever, P Abbeel
arXiv preprint arXiv:1611.02779, 2016
10122016
Local rademacher complexities
PL Bartlett, O Bousquet, S Mendelson
8792005
Structural risk minimization over data-dependent hierarchies
J Shawe-Taylor, PL Bartlett, RC Williamson, M Anthony
IEEE transactions on Information Theory 44 (5), 1926-1940, 1998
7231998
Benign overfitting in linear regression
PL Bartlett, PM Long, G Lugosi, A Tsigler
Proceedings of the National Academy of Sciences 117 (48), 30063-30070, 2020
7052020
Learning Rates for Q-learning.
E Even-Dar, Y Mansour, P Bartlett
Journal of machine learning Research 5 (1), 2003
5862003
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning.
E Greensmith, PL Bartlett, J Baxter
Journal of Machine Learning Research 5 (9), 2004
5582004
Classification with a Reject Option using a Hinge Loss.
PL Bartlett, MH Wegkamp
Journal of Machine Learning Research 9 (8), 2008
5182008
Sparse greedy Gaussian process regression
A Smola, P Bartlett
Advances in neural information processing systems 13, 2000
5112000
ÇöÀç ½Ã½ºÅÛÀÌ ÀÛµ¿µÇÁö ¾Ê½À´Ï´Ù. ³ªÁß¿¡ ´Ù½Ã ½ÃµµÇØ ÁÖ¼¼¿ä.
ÇмúÀÚ·á 1–20